Distribution Plots

Let’s discuss some plots that allow us to visualize the distribution of a data set.


Imports

import seaborn as sns
%matplotlib inline

Data

Seaborn comes with built-in data sets!

tips = sns.load_dataset('tips')
tips.head()
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4

Distplot

The distplot shows the distribution of a univariate set of observations.

sns.distplot(tips['total_bill'])
<matplotlib.axes._subplots.AxesSubplot at 0x7f7abfd123d0>
../_images/SB01-Distribution Plots_7_1.png
# To remove the kde layer and just have the histogram 
sns.distplot(tips['total_bill'],kde=False,bins=30)
<matplotlib.axes._subplots.AxesSubplot at 0x7f7aa7b60150>
../_images/SB01-Distribution Plots_8_1.png

Jointplot

jointplot() allows you to basically match up two distplots for bivariate data. With your choice of what kind parameter to compare with:

  • “scatter”

  • “reg”

  • “resid”

  • “kde”

  • “hex”

Scatter

sns.jointplot(x='total_bill',y='tip',data=tips,kind='scatter')
<seaborn.axisgrid.JointGrid at 0x7f7aa7b55f90>
../_images/SB01-Distribution Plots_11_1.png

Hex

sns.jointplot(x='total_bill',y='tip',data=tips,kind='hex')
<seaborn.axisgrid.JointGrid at 0x11d96f160>
../_images/SB01-Distribution Plots_13_1.png

Regression

sns.jointplot(x='total_bill',y='tip',data=tips,kind='reg')
<seaborn.axisgrid.JointGrid at 0x7f7aa7bca790>
../_images/SB01-Distribution Plots_15_1.png

Pairplot

pairplot will plot pairwise relationships across an entire dataframe (for the numerical columns) and supports a color hue argument (for categorical columns).

sns.pairplot(tips)
<seaborn.axisgrid.PairGrid at 0x7f7aa5854090>
../_images/SB01-Distribution Plots_17_1.png
# separate by sex and color 
sns.pairplot(tips,hue='sex',palette='coolwarm')
<seaborn.axisgrid.PairGrid at 0x7f7aa4cc10d0>
../_images/SB01-Distribution Plots_18_1.png

Rugplot

rugplots are actually a very simple concept, they just draw a dash mark for every point on a univariate distribution. They are the building block of a KDE plot

sns.rugplot(tips['total_bill'])
<matplotlib.axes._subplots.AxesSubplot at 0x1207c8b70>
../_images/SB01-Distribution Plots_20_1.png

kdeplot

kdeplots are Kernel Density Estimation plots. These KDE plots replace every single observation with a Gaussian (Normal) distribution centered around that value. For example:

# Don't worry about understanding this code!
# It's just for the diagram below
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

#Create dataset
dataset = np.random.randn(25)

# Create another rugplot
sns.rugplot(dataset);

# Set up the x-axis for the plot
x_min = dataset.min() - 2
x_max = dataset.max() + 2

# 100 equally spaced points from x_min to x_max
x_axis = np.linspace(x_min,x_max,100)

# Set up the bandwidth, for info on this:
url = 'http://en.wikipedia.org/wiki/Kernel_density_estimation#Practical_estimation_of_the_bandwidth'

bandwidth = ((4*dataset.std()**5)/(3*len(dataset)))**.2


# Create an empty kernel list
kernel_list = []

# Plot each basis function
for data_point in dataset:
    
    # Create a kernel for each point and append to list
    kernel = stats.norm(data_point,bandwidth).pdf(x_axis)
    kernel_list.append(kernel)
    
    #Scale for plotting
    kernel = kernel / kernel.max()
    kernel = kernel * .4
    plt.plot(x_axis,kernel,color = 'grey',alpha=0.5)

plt.ylim(0,1)
(0.0, 1.0)
../_images/SB01-Distribution Plots_22_1.png
# To get the kde plot we can sum these basis functions.

# Plot the sum of the basis function
sum_of_kde = np.sum(kernel_list,axis=0)

# Plot figure
fig = plt.plot(x_axis,sum_of_kde,color='indianred')

# Add the initial rugplot
sns.rugplot(dataset,c = 'indianred')

# Get rid of y-tick marks
plt.yticks([])

# Set title
plt.suptitle("Sum of the Basis Functions")
<matplotlib.text.Text at 0x121c41da0>
../_images/SB01-Distribution Plots_23_1.png

So with our tips dataset:

sns.kdeplot(tips['total_bill'])
sns.rugplot(tips['total_bill'])
<matplotlib.axes._subplots.AxesSubplot at 0x7f7a99ea4a50>
../_images/SB01-Distribution Plots_25_1.png
sns.kdeplot(tips['tip'])
sns.rugplot(tips['tip'])
<matplotlib.axes._subplots.AxesSubplot at 0x7f7a99e1fa90>
../_images/SB01-Distribution Plots_26_1.png